Image result for Dragon fly


dragonfly is an insect belonging to the order Odonatainfraorder Anisoptera (from Greek ἄνισος anisos, “unequal” and πτερόν pteron, “wing”, because the hindwing is broader than the forewing). Adult dragonflies are characterized by large, multifaceted eyes, two pairs of strong, transparent wings, sometimes with coloured patches, and an elongated body. Dragonflies can be mistaken for the related group, damselflies (Zygoptera), which are similar in structure, though usually lighter in build; however, the wings of most dragonflies are held flat and away from the body, while damselflies hold the wings folded at rest, along or above the abdomen. Dragonflies are agile fliers, while damselflies have a weaker, fluttery flight. Many dragonflies have brilliant iridescent or metallic colours produced by structural coloration, making them conspicuous in flight. An adult dragonfly’s compound eyeshave nearly 24,000 ommatidia each.

Fossils of very large dragonfly ancestors in the Protodonata are found from 325 million years ago (Mya) in Upper Carboniferous rocks; these had wingspans up to about 750 mm (30 in). There are about 3,000 extant species. Most are tropical, with fewer species in temperate regions.

Dragonflies are predators, both in their aquatic larval stage, when they are known as nymphs or naiads, and as adults. Several years of their lives are spent as nymphs living in fresh water; the adults may be on the wing for just a few days or weeks. They are fast, agile fliers, sometimes migrating across oceans, and often live near water. They have a uniquely complex mode of reproduction involving indirect insemination, delayed fertilization, and sperm competition. During mating, the male grasps the female at the back of the head, and the female curls her abdomen under her body to pick up sperm from the male’s secondary genitalia at the front of his abdomen, forming the “heart” or “wheel” posture.

Loss of wetland habitat threatens dragonfly populations around the world. Dragonflies are represented in human culture on artifacts such as pottery, rock paintings, and Art Nouveau jewellery. They are used in traditional medicine in Japan and China, and caught for food in Indonesia. They are symbols of courage, strength, and happiness in Japan, but seen as sinister in European folklore. Their bright colours and agile flight are admired in the poetry of Alfred, Lord Tennyson and the prose of H. E. Bates.

Dragonflies and their relatives are an ancient group. The oldest fossils are of the Protodonata from the 325 Mya Upper Carboniferous of Europe, a group that included the largest insect that ever lived, Meganeuropsis permiana from the early Permian, with a wingspan around 750 mm (30 in); their fossil record ends with the Permian–Triassic extinction event (about 247 Mya). The Protanisoptera, another ancestral group which lacks certain wing vein characters found in modern Odonata, lived from the Early to Late Permian age until the end Permian event, and are known from fossil wings from current day United States, Russia, and Australia, suggesting they might have been cosmopolitan in distribution. The forerunners of modern Odonata are included in a clade called the Panodonata, which include the basal Zygoptera (damselflies) and the Anisoptera (true dragonflies) Today there are some 3000 species extant around the world.

Dragonflies (suborder Anisoptera) are heavy-bodied, strong-flying insects that hold their wings horizontally both in flight and at rest. By contrast, damselflies (suborder Zygoptera) have slender bodies and fly more weakly; most species fold their wings over the abdomen when stationary, and the eyes are well separated on the sides of the head.

An adult dragonfly has three distinct segments, the head, thorax, and abdomen as in all insects. It has a chitinous exoskeleton of hard plates held together with flexible membranes. The head is large with very short antennae. It is dominated by the two compound eyes, which cover most of its surface. The compound eyes are made up of ommatidia, the numbers being greater in the larger species. Aeshna interrupta has 22650 ommatidia of two varying sizes, 4500 being large. The facets facing downward tend to be smaller. Petalura gigantea has 23890 ommatidia of just one size. These facets provide complete vision in the frontal hemisphere of the dragonfly. The compound eyes meet at the top of the head (except in the Petaluridae and Gomphidae, as also in the genus Epiophlebia). Also, they have three simple eyes or ocelli. The mouthparts are adapted for biting with a toothed jaw; the flap-like labrum, at the front of the mouth, can be shot rapidly forward to catch prey. The head has a system for locking it in place that consists of muscles and small hairs on the back of the head that grip structures on the front of the first thoracic segment. This arrester system is unique to the Odonata, and is activated when feeding and during tandem flight.

Anatomy of a dragonfly

The thorax consists of three segments as in all insects. The prothorax is small and is flattened dorsally into a shield-like disc which has two transverse ridges. The mesothorax and metathorax are fused into a rigid, box-like structure with internal bracing, and provides a robust attachment for the powerful wing muscles inside it. The thorax bears two pairs of wings and three pairs of legs. The wings are long, veined, and membranous, narrower at the tip and wider at the base. The hindwings are broader than the forewings and the venation is different at the base. The veins carry haemolymph, which is analogous to blood in vertebrates and carries out many similar functions, but which also serves a hydraulic function to expand the body between nymphal stages (instars) and to expand and stiffen the wings after the adult emerges from the final nymphal stage. The leading edge of each wing has a node where other veins join the marginal vein, and the wing is able to flex at this point. In most large species of dragonflies, the wings of females are shorter and broader than those of males. The legs are rarely used for walking, but are used to catch and hold prey, for perching, and for climbing on plants. Each has two short basal joints, two long joints, and a three-jointed foot, armed with a pair of claws. The long leg joints bear rows of spines, and in males, one row of spines on each front leg is modified to form an “eyebrush”, for cleaning the surface of the compound eye.

Migrant hawker, Aeshna mixta, has the long slender abdomen of aeshnid dragonflies.

The abdomen is long and slender and consists of 10 segments. There are three terminal appendages on segment 10; a pair of superiors (claspers) and an inferior. The second and third segments are enlarged, and in males, on the underside of the second segment has a cleft, forming the secondary genitalia consist of lamina, hamule, genital lobe and penis. There is remarkable variations in the presence and the form of the penis and the related structures, the flagellum, cornua and genital lobes. Sperm is produced at the 9th segment and is transferred to the secondary genitalia prior to mating. The male holds the female behind the head using a pair of claspers on the terminal segment. In females, the genital opening is on the underside of the eighth segment and is covered by a simple flap (vulvar lamina) or an ovipositor, depending on species and the method of egg-laying. Dragonflies having simple flap shed the eggs in water, mostly in flight. Dragonflies having ovipositor, use it to puncture soft tissues of plants and place the eggs singly in each puncture they made.

Dragonfly nymphs vary in form with species and are loosely classed into claspers, sprawlers, hiders, and burrowers. The first instar is known as a prolarva, a relatively inactive stage from which it quickly moults into the more active nymphal form. The general body plan is similar to that of an adult, but the nymph lacks wings and reproductive organs. The lower jaw has a huge, extensible labium, armed with hooks and spines, which is used for catching prey. This labium is folded under the body at rest and struck out at great speed by hydraulic pressure created by the abdominal muscles. Whereas damselfly nymphs have three feathery external gills, dragonfly nymphs have internal gills, located around the fourth and fifth abdominal segments. Water is pumped in and out of the abdomen through an opening at the tip. The naiads of some clubtails (Gomphidae) that burrow into the sediment, have a snorkel-like tube at the end of the abdomen enabling them to draw in clean water while they are buried in mud. Naiads can forcefully expel a jet of water to propel themselves with great rapidity.

Many adult dragonflies have brilliant iridescent or metallic colours produced by structural coloration, making them conspicuous in flight. Their overall coloration is often a combination of yellow, red, brown, and black pigments, with structural colours. Blues are typically created by microstructures in the cuticle that reflect blue light. Greens often combine a structural blue with a yellow pigment. Freshly emerged adults, known as tenerals, are often pale-coloured and obtain their typical colours after a few days, some have their bodies covered with a pale blue, waxy powderiness called pruinosity; it wears off when scraped during mating, leaving darker areas.

Noniridescent structural blue occurs in the green darner, Anax junius; the female (below) lacks blue.

Some dragonflies, such as the green darner, Anax junius, have a noniridescent blue which is produced structurally by scatter from arrays of tiny spheres in the endoplasmic reticulum of epidermal cells underneath the cuticle.

The wings of dragonflies are generally clear, apart from the dark veins and pterostigmata. In the chasers (Libellulidae), however, many genera have areas of colour on the wings: for example, groundlings (Brachythemis) have brown bands on all four wings, while some scarlets (Crocothemis) and dropwings (Trithemis) have bright orange patches at the wing bases. Some aeshnids such as the brown hawker (Aeshna grandis) have translucent, pale yellow wings.

Dragonfly nymphs are usually a well-camouflaged blend of dull brown, green, and grey.

Dragonflies are hemimetabolous insects; they do not have a pupal stage and undergo an incomplete metamorphosis with a series of nymphal stages from which the adult emerges. Eggs laid inside plant tissues are usually shaped like grains of rice, while other eggs are the size of a pinhead, ellipsoidal, or nearly spherical. A clutch may have as many as 1500 eggs, and they take about a week to hatch into aquatic nymphs or naiads which moult between six and 15 times (depending on species) as they grow. Most of a dragonfly’s life is spent as a nymph, beneath the water’s surface. The nymph extends its hinged labium (a toothed mouthpart similar to a lower mandible, which is sometimes termed as a “mask” as it is normally folded and held before the face) that can extend forward and retract rapidly to capture prey such as mosquito larvae, tadpoles, and small fish. They breathe through gills in their rectum, and can rapidly propel themselves by suddenly expelling water through the anus. Some naiads, such as the later stages of Antipodophlebia asthenes, hunt on land.

EcdysisEmperor dragonflyAnax imperator, newly emerged and still soft, holding on to its dry exuvia, and expanding its wings

Parts of a dragonfly nymph including the labial “mask”

The larval stage of dragonflies lasts up to five years in large species, and between two months and three years in smaller species. When the naiad is ready to metamorphose into an adult, it stops feeding and makes its way to the surface, generally at night. It remains stationary with its head out of the water, while its respiration system adapts to breathing air, then climbs up a reedor other emergent plant, and moults (ecdysis). Anchoring itself firmly in a vertical position with its claws, its skin begins to split at a weak spot behind the head. The adult dragonfly crawls out of its larval skin, the exuvia, arching backwards when all but the tip of its abdomen is free, to allow its exoskeleton to harden. Curling back upwards, it completes its emergence, swallowing air, which plumps out its body, and pumping haemolymph into its wings, which causes them to expand to their full extent.

Dragonflies in temperate areas can be categorized into two groups, an early group and a later one. In any one area, individuals of a particular “spring species” emerge within a few days of each other. The springtime darner (Basiaeschna janata), for example, is suddenly very common in the spring, but disappears a few weeks later and is not seen again until the following year. By contrast, a “summer species” emerges over a period of weeks or months, later in the year. They may be seen on the wing for several months, but this may represent a whole series of individuals, with new adults hatching out as earlier ones complete their short lifespans which is an average of 7 months.

Dragonflies are powerful and agile fliers, capable of migrating across the sea, moving in any direction, and changing direction suddenly. In flight, the adult dragonfly can propel itself in six directions: upward, downward, forward, backward, to left and to right. They have four different styles of flight: A number of flying modes are used that include counter-stroking, with forewings beating 180° out of phase with the hindwings, is used for hovering and slow flight. This style is efficient and generates a large amount of lift; phased-stroking, with the hindwings beating 90° ahead of the forewings, is used for fast flight. This style creates more thrust, but less lift than counter-stroking; synchronised-stroking, with forewings and hindwings beating together, is used when changing direction rapidly, as it maximises thrust; and gliding, with the wings held out, is used in three situations: free gliding, for a few seconds in between bursts of powered flight; gliding in the updraft at the crest of a hill, effectively hovering by falling at the same speed as the updraft; and in certain dragonflies such as darters, when “in cop” with a male, the female sometimes simply glides while the male pulls the pair along by beating his wings.

Southern hawker, Aeshna cyanea: its wings at this instant are synchronised for agile flight.

The wings are powered directly, unlike most families of insects, with the flight muscles attached to the wing bases. Dragonflies have a high power/weight ratio, and have been documented accelerating at 4 G linearly and 9 G in sharp turns while pursuing prey.

Dragonflies generate lift in at least four ways at different times, including classical lift like an aircraft wing; supercritical lift with the wing above the critical angle, generating high lift and using very short strokes to avoid stalling; and creating and shedding vortices. Some families appear to use special mechanisms, as for example the Libellulidae which take off rapidly, their wings beginning pointed far forward and twisted almost vertically. Dragonfly wings behave highly dynamically during flight, flexing and twisting during each beat. Among the variables are wing curvature, length and speed of stroke, angle of attack, forward/back position of wing, and phase relative to the other wings.

Old and unreliable claims are made that dragonflies such as the southern giant darner can fly up to 97 km/h (60 mph). However, the greatest reliable flight speed records are for other types of insects. In general, large dragonflies like the hawkers have a maximum speed of 36–54 km/h (22–34 mph) with average cruising speed of about 16 km/h (9.9 mph). Dragonflies can travel at 100 body-lengths per second in forward flight, and three lengths per second backwards

In high-speed territorial battles between male Australian emperors (Hemianax papuensis), the fighting dragonflies adjust their flight paths to appear stationary to their rivals, minimizing the chance of being detected as they approach. To achieve the effect, the attacking dragonfly flies towards his rival, choosing his path to remain on a line between the rival and the start of his attack path. The attacker thus looms larger as he closes on the rival, but does not otherwise appear to move. Researchers found that six of 15 encounters involved motion camouflage.